New Zealand
New Zealand New Zealand
Consumers make most of their payments by internet banking
  • 74%
  • 70.5%
  • 54.5%
  • 46.5%
  • 39.6%
  • 40.7%
  • A higher percentage make payments via internet banking to banks and insurance companies, telcos, and retailers, respectively, compared to the regional average
  • Impact: Anti-fraud capabilities critical to the increased digital transaction frequency and customers’ trust in banks
Australia Australia
Consumers are most satisfied with the post-fraud service of banks and insurances companies
  • More than 70% satisfaction rate compared to 59.7% on average
  • Impact: Increased trust in BFSIs
Indonesia Indonesia
Consumers that encountered most fraud incidents in the past 12 months

AP Average

  • 49.8% have experienced fraud at least once compared to 34.7% on average
  • Impact: Overall anti-fraud capabilities need improvement
Singapore Singapore
Consumers have the highest trust towards government
AP Average
  • 75.5% choose government agencies, compared with 51.7% on average
  • Impact: Trust of personal data protection is centered around government agencies
Vietnam Vietnam
Consumers encountered most fraud incidents in retail and telco during the past 12 months
  • 55%
  • 54.5%
  • 32.8%
  • 35.2%
  • 55% and 54.5% have experienced fraud at least once in retail and telco, respectively, compared to 32.8% and 35.2% on average
  • Impact: Overall anti-fraud capabilities need improvement
Thailand Thailand
Most Thai consumers believe speed and resolution are severely lacking (response/ detection speed toward fraud incidents)
AP Average
  • 60.5% think it is most important, compared to 47.7% on average
  • Impact: Response time as one of key factors to fraud management to retain customers and gain their trust
India India as standalone
Consumers have the largest number of shopping app accounts in the region
  • Average of three accounts per person
  • Impact: Highest exposure to online fraud
Hong Kong
Hong Kong Hong Kong
The least percentage of consumers with high satisfaction level toward banks and insurance companies’ fraud management
AP Average
  • Only 9.7% are most satisfied compared to 21.1% on average
  • Impact: effective response towards fraud incidents to be improved
China China
Consumers are the most tolerant toward submitting and sharing of personal data
AP Average
  • 46.6% compared to the AP average of 27.5% are accepting of sharing personal data of existing accounts with other business entities
  • Impact: higher exposure of data privacy and risk of fraud
Japan Japan as standalone
Consumers most cautious on digital accounts and transactions
50.7% Actively maintain digital accounts’ validity
27% AP Average
45.5% Do not do online bank transfers
13.5% AP Average
  • More than 70% did not encounter fraud incidents in past 12 months, compared to 50% on average
  • Impact: Relatively low risk of fraud

Turning Big Data into action

Turning Big Data into action

The banking and financial services sector that generates `Big Data’ from every interaction with its customers now wants to give a technological edge to refine this and improve the customer engagement and experience.


Companies in the sector are increasingly embracing sophisticated data analytical tools to decode such voluminous data to identify the most valuable customers, timely objectives (acquisition or retention) and optimal ways to reach out (direct marketing and channel strategy), thereby enhancing the quality of services offered throughout a customer’s lifecycle. Having recognized the golden opportunity lying in a customer’s digital footprints, the sector is also vetting even a customer’s online purchases and social media posts to create a superior experience. Let’s look at the valuable role data analytics can play in a customer’s lifecycle.


#1 Improves customer experience, efficiency

From the acquisition stage, knowing and engaging with a customer is a major challenge for the workforce. Data analytics helps an institution integrate huge voluminous data from disparate and new sources to enable a top down view of customers. The technology allows the creation of a unique outlook for each customer, incorporating the entire relationship with the organization, inclusive of the risk scores and metrics, profitability, the ability and propensity to pay and the underlying lifetime value of a customer. Most of such platforms now allow addition of data from newer sources that may help supplement the interpretation of a customer by an organisation.  


#2 New sourcing mechanisms

With analytics, one can pick up key inputs from customer spending habits, using the history of their transactional data across all channels, lifestyle information (car and student loan payments or ATM usage), market indicators such as payment patterns on websites, digital web footprints and interests such as sports, activities on social networks and portfolio metrics. Though complex and sophisticated, such additional information points can refine or drastically alter an organization’s perspective of a customer, influencing its decisions.


#3 Enabling intuitive interactions

Improving customer experience leads to real and quantifiable value for companies only if it is linked to a broader strategy - from pricing a product to delivering it. The evaluation of customer experience is complex for varying expectations and the relative value of each segment to a customer. Data analytics enables an intuitive and personalised interaction, with timely advice that adds value to a customer-organisation relationship (key to get new accounts, more wallet share and reduce customer attrition) and a competent service delivery across multiple channels which are critical to enrich customer experiences. Here, an impeccable linkage between the digital front-end experience and the back-end is a vital.


#4 Identifying more valuable customers

A thorough profiling would demarcate the potential of a customer to become more valuable as well as to create a more meaningful service segmentation. Further, if it can be analysed in conjunction with those of the credit bureaus, it could become more actionable in terms of credit disbursals and so on.  Analytics can cut down bad debts by knowing and managing the overall exposure, more consequential take-ups of relevant offers and delegating more resources to the highest prospective customer besides providing a holistic customer communication.


#5 Enhanced customer intelligence

Data analytics is ideal for managing key information inflow from customers without being intrusive; for example, an automatic extension of credit limits for good customers (based not only on risk, but the overall projected lifetime value of the individual) can be authorised, using the overall conduct so far. This could lead to a higher customer satisfaction. Similarly, a customer-level segmentation enlightens if the products – an organisation has at its disposal - are good enough to serve their needs or if it needs to offer alternative products to improve engagement and profitability.


#6 Lower customer attrition

Analytics can also lower customer attrition through account-level incentives such as rewards, limit increases, etc.) besides reviving dormant accounts that may have potential untapped value. A major opportunity to enhance average revenue per customer comes from cross-sale or up sale opportunities. Data analytics can reveal varying or progressive needs while balancing existing credit and risk exposure across accounts. This can fine-tune the marketing campaigns. Another advantage is the creation and optimisation of loyalty programmes - which if executed well - can maximize returns going forward.


#7 Active credit risk scoring, delinquency

When it comes to debt management, analytics provides dynamic customer reviews to detect early signs of increasing risk thus helping organisations take active steps to avoid delinquencies. In fact, credit risk scoring is one of the most critical aspects that witnesses the application of analytics. Besides specifying risks of lending to a customer, credit scores point at whether, how much and at what rate to grant credit. It takes into account the need to increase or decrease an existing credit limit, adding a dimension of behavioural scoring.


While analytics can help reduce delinquency, its role is far more critical to manage the collection of delinquent accounts or recovery of charged-off loans. It can easily enable a collector to prioritise the collection accounts to maximize the productivity – something a human intervention would find hard to achieve. It all begins at the application level where fraud needs to be detected and managed by using the right solution. Fraudulent applications have been on the rise forcing the financial services sector to raise their guard. Analytics can sieve microscopically for genuine customers before weeding out potentially deceitful applicants, without much loss of time. 


The successful names in the banking and financial services space have always excelled in their customer relationships. They have been equally rewarded with better opportunities for cross-sell and lower attrition for their optimal use of the big data and the learning derived from it.  Data analytics has just added much sharpness to their mission - how to excel at the customer interface. 


Contributed by Mr. Mohan Jayaraman, Managing Director, Experian Credit Bureau, India

Read full article

Mohan Jayaraman

By Mohan Jayaraman

Related Products

Analytics Solutions

Our analytics solution helps across lifecycle by helping optimizing decisioning throughout the customer lifecycle.

Analytics Solutions
Customer Acquisition

We can help you improve profitability while decreasing customer acquisition costs.

Customer Acquisition
Customer Management

Offer the right products at the right time to valued customers and maximise profits

Customer Management
Decisioning & Credit Risk Management

Enhance decision processes to develop and deliver profitable acquisition, portfolio and debt management decisions

Decisioning & Credit Risk Management
Fraud Prevention

Experian’s Fraud and Identity Solutions help to protect your business from fraudsters at each stage of the customer lifecycle while ensuring a frictionless customer experience.

Fraud  Prevention
Debt Collection

Reduce debt recovery cost and maximize returns on your efforts

Debt  Collection
Analytics Solutions

Through our data resources and analytical expertise, Experian provides one of the critical building blocks for growth in consumer economies around the world.

Analytics Solutions

Related Articles

Launching our first Global Diversity Equity and Inclusion Report and the 2021 Sustainable Business Report
Launching our first Global Diversity Equity and Inclusion Report and the 2021 Sustainable Business Report

We sit in a pivotal position in the societies where we operate. For us, using our expertise in data to help tackle big societal issues, is much more than an…

Learn more
Empowering our community and making a difference
Empowering our community and making a difference

A gist on how Experian is making a difference, one step at a time. Experian India supported various causes through our NGO partners – Grameen, Srujna Charitable Trust, Guardian of…

Learn more
Four ways an automated fraud management framework delivers business success in a global digital economy
Four ways an automated fraud management framework delivers business success in a global digital economy

In an increasingly globalised economy, businesses offering digital goods and services to regional and global audiences are seeing new opportunities and experiencing incredible growth.    With a large population of…

Learn more

  • Download Now